一元二次方程数学教学教案【新版多篇】

一元二次方程数学教学教案【新版多篇】

元二次方程数学教学教案 篇一

一、教材分析

1、教材的地位和作用

一元二次方程是中学教学的主要内容,在国中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

2、教学目标及确立目标的依据

九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

3、重点,难点及确定重难点的依据

“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。

二、教材处理

在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。

三、教学方法和学法

教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。

四、教学手段

采用投影仪

五、教学程序

1、新课导入:

(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)

(2)列方程解应用题的方法,步骤?(并引例打基础)

课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)

设出求知数,列出代数式,并根据等量关系列出方程

元二次方程数学教学教案 篇二

教学目标

(一)教学知识点

1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求

1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3、通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求

1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2、具有初步的创新精神和实践能力。

教学重点

1、体会方程与函数之间的联系。

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点

1、探索方程与函数之间的联系的过程。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法

讨论探索法。

教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ。创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

元二次方程数学教学教案 篇三

教学内容

一元二次方程概念及一元二次方程一般式及有关概念。 教学目标

2

了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目。

1、通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义。 2.一元二次方程的一般形式及其有关概念。 3.解决一些概念性的题目。

4、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。 重难点关键

1、?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念。 教学过程

一、复习引入

学生活动:列方程。 问题(1)古算趣题:“执竿进屋”

笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。

如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺, ?根据题意,?得________. 整理、化简,得:__________. 二、探索新知

学生活动:请口答下面问题。

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程。 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程。

2

一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。

2

一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。

2

分析:一元二次方程的一般形式是ax+bx+c=0(a≠0)。因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等。

解:略

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。

2

例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项。

22

分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式。 解:略

三、巩固练习

教材 练习1、2

补充练习:判断下列方程是否为一元二次方程?

(1)3x+2=5y-3 (2) x=4 (3) 3x-2

2

22

52 2 2

=0 (4) x-4=(x+2) (5) ax+bx+c=0 x

四、应用拓展

22

例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程。

2

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可。

22

证明:m-8m+17=(m-4)+1

2

∵(m-4)≥0

22

∴(m-4)+1>0,即(m-4)+1≠0

∴不论m取何值,该方程都是一元二次方程。

2

? 练习: 1.方程(2a—4)x—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为

一元一次方程?

/4m/-4

2、当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握:

2

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用。 六、布臵作业

第2课时 21.1 一元二次方程

教学内容

1、一元二次方程根的概念;

2、?根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目。 教学目标

了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题。 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根。同时应用以上的几个知识点解决一些具体问题。 重难点关键

1、重点:判定一个数是否是方程的根;

2、?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。

教学过程

一、复习引入

学生活动:请同学独立完成下列问题。

2

问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0

列表:

问题2列表:

3

老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少? (2)如果抛开实际问题,问题2中还有其它解吗?

22

老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解。(2)如

果抛开实际问题,问题2中还有x=-11的解。

一元二次方程的解也叫做一元二次方程的根。

2

回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意。因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解。

2

例1.下面哪些数是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.

分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可。

2

解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根。

2

例2.若x=1是关于x的一元二次方程a x+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值

2 2

练习:关于x的一元二次方程(a-1) x+x+a-1=0的一个根为0,则求a的值

点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解。

例3.你能用以前所学的知识求出下列方程的根吗?

222

(1)x-64=0 (2)3x-6=0 (3)x-3x=0

分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义。 解:略

三、巩固练习

教材 思考题 练习1、2.

四、归纳小结(学生归纳,老师点评) 本节课应掌握:

(1)一元二次方程根的概念;

(2)要会判断一个数是否是一元二次方程的根;

(3)要会用一些方法求一元二次方程的根。(“夹逼”方法;平方根的意义) 六、布臵作业

1、教材 复习巩固3、4 综合运用5、6、7 拓广探索8、9. 2.选用课时作业设计。

第3课时 21.2.1 配方法

教学内容

运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程。 教学目标

理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题。

2

提出问题,列出缺一次项的一元二次方程ax+c=0,根据平方根的意义解出这个方程,然后知识迁移到解

2

a(ex+f)+c=0型的一元二次方程。 重难点关键

2

1、重点:运用开平方法解形如(x+m)=n(n≥0)的方程;领会降次──转化的数学思想。

22

2、难点与关键:通过根据平方根的意义解形如x=n,知识迁移到根据平方根的意义解形如(x+m)=n(n≥0)的方程。 教学过程

一、复习引入

学生活动:请同学们完成下列各题 问题1.填空

222222

(1)x-8x+______=(x-______);(2)9x+12x+_____=(3x+_____);(3)x+px+_____=(x+____)。 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(

p2p

) 。 22

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如

何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知

4

上面我们已经讲了x=9,根据平方根的意义,直接开平方得x=〒3,如果x换元为2t+1,即(2t+1)=9,能否也用直接开平方的方法求解呢? (学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=〒3 即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=--2

2 2 2

例1:解方程:(1)(2x-1)=5 (2)x+6x+9=2 (3)x-2x+4=-1

22

分析:很清()楚,x+4x+4是一个完全平方公式,那么原方程就转化为(x+2)=1.

2

解:(2)由已知,得:(x+3)=2 直接开平方,得:x+3=

所以,方程的两根x1

x2

2

例2.市政府计划2年内将人均住屋面积由现在的10m提高到14.4m,求每年人均住屋面积增长率。 分析:设每年人均住屋面积增长率为x.?一年后人均住屋面积就应该是10+?10x=10(1+x);二年后人均

2

住屋面积就应该是10(1+x)+10(1+x)x=10(1+x) 解:设每年人均住屋面积增长率为x,

2

则:10(1+x)=14.4

2

(1+x)=1.44

直接开平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住屋面积的增长率应为正的,因此,x2=-2.2应舍去。 所以,每年人均住屋面积增长率应为20%。

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程。?我们把这种思想称为“降次转化思想”。

三、巩固练习

教材 练习。 四、应用拓展

例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?

分析:设该公司二、三月份营业额平均增长率为x,?那么二月份的营业额就应该是(1+x),三月份的营

2

业额是在二月份的基础上再增长的,应是(1+x)。 解:设该公司二、三月份营业额平均增长率为x.

2

那么1+(1+x)+(1+x)=3.31 把(1+x)当成一个数,配方得:

22

1232

)=2.56,即(x+)=2.56 22333

x+=〒1.6,即x+=1.6,x+=-1.6

222

(1+x+

方程的根为x1=10%,x2=-3.1

因为增长率为正数,

所以该公司二、三月份营业额平均增长率为10%。 五、归纳小结

本节课应掌握: 由应用直接开平方法解形如x=p(p≥0),那么x=

解形如(mx+n)=p(p≥0),那么mx+n=

六、布臵作业

1、教材 复习巩固1、2.

第4课时 22.2.1 配方法(1)

教学内容

间接即通过变形运用开平方法降次解方程。 教学目标

5

2

2

p<0则方程无解