陀螺仪的应用与发展

一、调研背景

陀螺仪的应用与发展

随着科学技术的进步,手机已经不再仅仅是一个简单的通信工具,而是一种具有多元化、智能化的便携式电子设备。消费者可以使用手机听音乐、看电影、拍照、看书、玩游戏、收发邮件等,手机的功能日益强大:通信、娱乐、办公,无所不能。智能手机已经成为日常生活中必不可少的工具,而让手机具备这些强大功能的,就是触摸屏、陀螺仪、加速度传感器、光线传感器、重力传感器等各式各样的传感器。

现代的智能手机一个非常大的发展就在于,为了实现人机交互的多样化与操作动作的直观性,基于手机自身运动识别的传感器开始应用于智能手机当中。摇一摇开始寻找好友、运动时记录步数、刺激的赛车游戏中把手机当作方向盘来操控,为了实现手机自身运动识别的功能,必须利用陀螺仪、加速度传感器等运动传感器,通过感知手机运动过程中的线性加速度、角加速度、运动方向、重力方向等物理量来实现。

二、人类感知

那么人体是否也有一台类似这样的机器?答案是肯定的,人体的精密程度并非手机电脑可以比的,人体同样有芯片,有电路,有各种传动轴,有发电站等等。在精细的活动中,光有动力和传动是远远不够的,更重要的就是神经感觉的支配能力。

耳蜗前庭系统传递运动和重力感觉。解剖上,它由迷路和前庭核组成,迷路作为特异感受器位于内耳,前庭核在脑干。有关运动的信息还通过视觉系统和其他感觉系统传递,所以,从某种意义上讲,前庭系统是运动感觉的一个亚系统。迷路由三个半规管和耳石组成。半规管充满了内淋巴液,每个半规管有一终帽,像一个由毛细胞组成的子堆,毛细胞的胶质层覆盖半规管的整个管径。耳石包括两类不同朝向的毛细胞,椭圆囊的毛细胞接近于水平朝向(上下重力运动),球囊的则呈垂直朝向(直线加速运动)。毛细胞的顶部覆盖着一块耳石,其比重较周围组织大,任一直线加速都可引起耳石位置的改变。从而使下方细胞伸出的纤毛弯曲。重力持续地在垂直于地面的方向上施加直线匀加速。

三、原理及技术发展迭代

1. 陀螺仪

1.1陀螺仪的原理

陀螺仪,是一种基于角动量守恒原理,用来感测与维持方向的装置。陀螺仪在工作时要给它一个力,使它快速旋转起来。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统,能判断物体在幸间中的相对位置、方向、角度以及水平的变化作用。最终根据用户的动作输出相对应的指令。机械结构的陀螺仪主要是由一个位于轴心且可旋转的转子构成。陀螺仪一旦开始旋转,由于转子的角动量,陀螺仪有抗拒方向改变的趋向。机械陀螺仪的主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴上加一内环架,那么陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪。

性愈小。而逆动方向可根据逆动性原理取决于施力方向及转子旋转方向。

微机电陀螺仪

在智能手机中应用的陀螺仪不是机械陀螺仪,而是微机械(MEMS)陀螺仪。微机械MEMS是英文Micro Electro Mechanical systems的缩写,即微电子机械系统。它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。这种微电子机械系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令采取行动。传统的陀螺仪主要是利用角动量守恒原理,因此它主要是一个不停转动的物体。但是微机械陀螺仪的工作原理不是这样的,因为要用微机械技术在硅片衬底上加工出一个可转动的结构并不是一件容易的事。微机械陀螺仪利用科里奥利力——旋转物体在有径向运动时所受到的切向力。

如果物体在圆盘上没有径向运动,科里奥利力就不会产生。因此,在MEMS陀螺仪的设计上,这个物体被驱动,不停地来回做径向运动或者震荡,与此对应的科里奥利力就是不停地在横向来回变化,并有可能使物体在横向作微小震荡,相位正好与驱动力差90度。MEMS陀螺仪通常有两个方向的可移动电容板。径向的电容板加震荡电压迫使物体作径向运动,横向的电容板测量由于横向科里奥利运动带来的电容变化。因为科里奥利力正比于角速度,所以由电容的变化可以计算出角速度。

相比于传统的机械陀螺,MEMS陀螺仪具有成本低、体积小、质量轻、可靠性高、温度漂移小、抗冲击力强、测量范围大等优点。三轴MEMS陀螺仪最早由苹果iPhone 4采用,它能够分别测量X, Y, Z三个方面的加速度值,X方向值的大小代表手机水平移动,Y方向值的大小代表手机垂直移动,Z方向值的大小代表手机的空间垂直方向,然后把相关的加速度值传输给操作系统,通过判断其大小变化。

四、前沿发展

氦-氖环形激光陀螺仪

相比传统的机械式转子陀螺仪,主要优点是无机械转子,结构简单(少于20个部件),抗振动性能好,启动快,可靠性高,数字输出。

此外,一些研究人员还提出用固态增益介质替换氦-氖气体,能够使陀螺仪的工作寿命更长、成本更低和制造更简单,这种陀螺也被称为固态环形激光陀螺仪(固态RLG)。

目前,基于氦-氖环形激光陀螺仪的惯性导航系统已经广泛应用在航空和航海导航、战略导弹的导航、制导与控制领域,成为主要的高性能陀螺仪之一。

光纤陀螺仪

从20世纪60年代开始,美国海军研究办公室希望发展一种比氦-氖环形激光陀螺仪的成本更低、制造流程更简单、精度更高的光纤角速度传感器,也就是俗称的光纤陀螺。

目前,最为常见的光纤陀螺仪是相敏光纤陀螺仪,通过测量在一个光纤线圈中的两束反向传播光束的相移以敏感载体转动,从而计算出其角速率。

因此,光纤陀螺仪的精度主要取决于其采用的光纤种类和光电检测系统,偏值一般处于0.001度/时-0.0002度/时之间。现在,光纤陀螺仪已经被广泛应用于鱼雷、战术导弹、潜艇和航天器等。

集成光学陀螺仪

随着集成光路的发展,可在单块芯片上实现非常复杂的功能,可以将几毫米直径的集成环形腔激光器、光电检测电路都集成在同一芯片上,作为集成光学陀螺仪的敏感元件,这样可以大大减小现有光学陀螺仪的质量和尺寸,降低成本和功耗,更好地控制热效应,增加可靠性,因此利用集成光学技术制造的光学陀螺仪具有良好的发展前景。

五、将来的应用与影响

(1)对将来导航、无人驾驶的协助

1、陀螺仪能在GPS信号不好时能继续发挥导航的作用并修正GPS定位不准的问题

在GPS信号不好时,陀螺仪可根据已获知的方位、方向和速度来继续进行精确导航,这也是惯性导航技术的基本原理。同时也可修正GPS信号不好时定位偏差过大的问题。

2、陀螺仪能比GPS提供更灵敏准确的方向和速度

GPS是无法即时发现车子速度和方向的改变的,要等跑了一段距离之后才能测出,因此当你车子在非导航情况下转变了方向后,就会出现小陈那样的状况,导航就无法辨识你车子的转向,结果把方向导错了。而陀螺仪能够在方向和速度改变的瞬间即时测出,从而能让导航软件及时的修改导航路线

3、陀螺仪在上立交桥时更灵敏准确的识别

民用GPS的精度是无法识别上没上立交桥的,而陀螺仪却可测出车子是否向上移动了,从而能让导航软件及时的修改导航路线。依靠GPS卫星的信号导航和陀螺仪的惯性导航,有效提高了导航精准度,即使在失去GPS信号后,系统仍能通过自主推算来继续导航,为车主提供准确的行驶指示。

(2)陀螺仪在无人机飞行控制系统中的应用

无人机的飞行控制系统是其最主要的组成部分之一,而姿态的稳定控制,则是对无人机顺利执行各项任务的有效方法。在目前的无人机实际制造与应用中,有的无人机产品是基于三轴陀螺仪和倾角传感器,来构成全姿态增稳控制系统的。

无人机姿态增稳控制属于内回路控制,它包括姿态保持与控制、速度控制等模式。内回路控制是在以三轴陀螺仪和倾角传感器获取无人机飞行姿态的基础上,通过对升降舵、方向舵的控制,完成飞行姿态的稳定与控制。

六、总结

陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现在,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。