高中数学【精品多篇】

高中数学【精品多篇】

提高高中数学学习成绩的关键: 篇一

国中学生学数学,靠的是一个字:练!高中学生学数学,靠的也是一个字:悟!

1、做作业前先把笔记消化掉

有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

2、做完题要多反思

学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。俗话说:“有钱难买回头看”。做完作业,回头细看,价值极大。这个回头看,是学习过程中很重要的一个环节。

要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。有了以上五个回头看,学生的解题能力才能与日俱增。投入的时间虽少,效果却很大。可称为事半功倍。

有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,水平才能长进。

人教版数学必修一知识点 篇二

1、函数零点的定义

(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。

(2)方程0)(xf有实根Û函数()yfx的图像与x轴有交点Û函数()yfx有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点

①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。

③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(

2、函数零点的判定

(1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。

(2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法

①代数法:函数)(xfy的零点Û0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。

(3)零点个数确定

0)(xfy有2个零点Û0)(xf有两个不等实根;0)(xfy有1个零点Û0)(xf有两个相等实根;0)(xfy无零点Û0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定。

3、二分法

(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;

(2)用二分法求方程的近似解的步骤:

①确定区间[,]ab,验证()()0fafb,给定精确度e;

②求区间(,)ab的中点c;③计算()fc;

(ⅰ)若()0fc,则c就是函数的零点;

(ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb);

④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步。

高三年级数学必修一知识点 篇三

1.数列的定义

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别。如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。

2.数列的分类

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列。在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列。

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列。

3.数列的通项公式

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非。如:数列1,2,3,4,…,

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循。

再强调对于数列通项公式的理解注意以下几点:

(1)数列的通项公式实际上是一个以正整数集N.或它的有限子集{1,2,…,n}为定义域的函数的表达式。

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项。

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式。

如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式。

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不。

4.数列的图象

对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:

序号:1234567

项:45678910

这就是说,上面可以看成是一个序号集合到另一个数的集合的映射。因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N.(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值。这里的函数是一种特殊的函数,它的自变量只能取正整数。

由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式。

数列是一种特殊的函数,数列是可以用图象直观地表示的。

数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确。

把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点。